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A general method for computing charge and current density source terms for
Maxwell’s equations from particles weighted to a mesh is described. The method
presented here eliminates the need for correction factors often applied in curvilin-
ear coordinates to compensate for errors at the edge of the system, and applied in
the interior as well for nonuniform meshes. Generality is achieved by weighting
volume elements using a spline symmetric to that by which particle charge and cur-
rent are weighted to the mesh. The method presented has a number of desirable
properties, including conservation of charge, preservation of a uniform distribution,
and generality on nonuniform meshes with arbitrary particle–mesh interpolation
schemes. The method recovers the exact answer in the limit of mesh sizes approaching
zero. c© 2001 Elsevier Science
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1. INTRODUCTION

In charge and current accumulation schemes commonly used in particle-in-cell codes,
a systematic error occurs on the boundary cells in curvilinear coordinates. The error is
particularly severe on the axis in cylindrical and spherical models, with systematic errors 33
and 100% larger than the theoretical value for either charge or current density in cylindrical
and spherical coordinates, respectively. Additional error occurs at the outer edge of the
system, and throughout the interior for nonuniform meshes. This error leads to similar
errors in the forces calculated at those points, as well as to the exacerbation of radial noise
due to particle statistics, which is largest nearr = 0. The errors in density donot decrease
with decreasing mesh size. This problem is not present in Cartesian coordinates, even for
nonuniform meshes.

The issue of radial correction factors for the charge density term has been addressed
in recent works by Ruyten [1] and by Larsenet al. [2]. These works derive the error for
linear weighting to uniform meshes in cylindrical coordinates and propose correction terms.
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In [1], the author states that the axial behavior is beyond the scope of the work. In [2], the
analysis carried out includes the origin, and the proposed correction is shown to approach
the theoretical value for large numbers of particles. We demonstrate that the result of [2]
is exact for the uniform charge density case despite errors shown in that paper for charge
density at the axis.

In this work, the error is analyzed for the uniform particle density distribution for the
charge density,ρ. A general scheme is developed which applies the same interpolation
scheme to both the particle and the volume or surface element in order to obtain a den-
sity which eliminates the systematic error in curvilinear coordinates. The new scheme is
compared with analytic theory in cylindrical and spherical coordinates. The algorithm is
extended to the current density,J.

2. DENSITY ERRORS

In this section, the errors in the most common interpolation scheme used in particle
simulation [3], linear weighting, are demonstrated for uniform density in one dimension
on a nonuniform mesh in cylindrical and spherical coordinates. For an arbitrary continuum
particle distribution specified byf (r ), the exact density in cylindrical coordinates is given
by

n(r )=
∫ r+dr

r f (r ′) dr ′∫ r+dr
r 2πr ′ dr ′

. (1)

For the uniform particle distribution,f (r ) = 2πr , and we obtainn(r ) = 1. Simi-
larly, in spherical coordinates for the uniform particle distributionf (r ) = 4πr 2 we ob-
tain

n(r )=
∫ r+dr

r f (r ′) dr ′∫ r+dr
r 4π(r ′)2 dr ′

= 1. (2)

In the classical particle scheme [3], the cell volumes are computed from geometric
considerations independently of the weighting scheme used to accumulate charge to the
grid. Because the volume elements are nonlinear in the spatial variable for curvilinear
coordinates, this leads to systematic errors. This conceptual error is precisely why the
previous works [1, 2] describe corrections to the weighting scheme. For linear weighting
on a nonuniform mesh in cylindrical coordinates, we can write the density at an arbitrary
intermediate node for an arbitrary particle distributionf (r ) in the standard way [3] in order
to make the conceptual error more apparent. That is,

nj =
∫ r j

r j−1
f (r ) r − r j−1

r j − r j−1
dr + ∫ r j+1

r j
f (r ) r j+1− r

r j+1− r j
dr∫ r j+1/2

r j−1/2
2πr dr

, (3)

where r j refers to the position of thej th mesh, andr j+1/2≡ (r j + r j+1)/2. The edge
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densities are written (valid also on axis,r0= 0) as

n0=
∫ r1

r0
f (r ) r1− r

r1− r0
dr∫ r1/2

r0
2πr dr

(4)

and

nN =
∫ r N

r N−1
f (r ) r − r N−1

r N − r N−1
dr∫ r N

r N−1/2
2πr dr

. (5)

For a uniform particle distribution,f (r ) = 2πr, the standard discrete densities in
Eqs. (3)–(5) become

nj = 4

3

r j−1+ r j + r j+1

r j−1+ 2r j + r j+1
, (6)

n0 = 4

3

2r0+ r1

3r0+ r1
, (7)

and

nN = 4

3

r N−1+ 2r N

r N−1+ 3r N
. (8)

On a nonuniform mesh, the linear weighting with uncorrected volumes always produces
the incorrect result for all cells. For a uniform mesh, we see from inspection of Eq. (6) that
the correct solution is produced for the interior cells, but the systematic error persists at the
edges. For nonuniform meshes, the error occurs at interior points as well. The systematic
error is 1/3 on axis for meshes which include the axis and is independent of grid spacing1r .
Note that the error in the outer edge is small forNÀ 1. The uncorrected results for a uniform
and nonuniform mesh are plotted in Fig. 1.

A similar development for linear weighting in spherical coordinates for the uniform
particle distribution,f (r )= 4πr 2, gives

nj = 2
r 2

j−1+ r j−1r j + r j−1r j+1+ r 2
j + r j r j+1+ r 2

j+1

r 2
j−1+ 3r j−1r j + r j−1r j+1+ 3r 2

j + 3r j r j+1+ r 2
j+1

, (9)

n0= 2
3r 2

0 + 2r0r1+ r 2
1

7r 2
0 + 4r0r1+ r 2

1

, (10)

and

nN = 2
r 2

N−1+ 2r N−1r N + 3r 2
N

r 2
N−1+ 4r N−1r N + 7r 2

N

. (11)

For uniform mesh spacing,1r , Eqs. (9)–(11) become

nj = 2
6r 2

j +12
r

12r 2
j +12

r

, (12)

n0 = 2
6r 2

0 + 4r01r +12
r

12r 2
0 + 6r01r +12

r

, (13)
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FIG. 1. Mesh densities computed using standard linear weighting (uncorrected) on a uniform and nonuni-
form mesh in cylindrical coordinates, as well as the corrected density on both meshes. The uniform mesh has
N= 10 steps; the nonuniform mesh is computed fromr j =

√
r 2

j−1 + (r 2
N − r 2

0)/N, such that the interval contains
N= 10 equal volumes.

FIG. 2. Mesh densities computed using standard linear weighting (uncorrected) on a uniform and nonuniform
mesh in spherical coordinates, as well as the corrected density on both meshes. The uniform mesh hasN= 10 steps;
the nonuniform mesh is computed fromr j = [r 3

j−1 + (r 3
N − r 3

0)/N]1/3, such that the interval containsN= 10 equal
volumes.
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and

nN = 2
6r 2

N − 4r N1r +12
r

12r 2
N − 6r N1r +12

r

. (14)

Note that the uncorrected density for the spherical case is always in error, approaching the
correct solution only forr j À1r . The uncorrected results for a uniform and nonuniform
mesh are plotted in Fig. 2. The systematic error is 100% on axis for meshes which include
the axis, independent of grid spacing1r .

3. IMPROVED DENSITY-WEIGHTING ALGORITHM

In this section, a general algorithm is developed for computing the charge density in
nonuniform meshes for curvilinear coordinates using arbitrary particle–mesh interpolation.
Consider a modified calculation for the volume in which differential volume elements are
weighted to the mesh using the same algorithm as the charge weighting. A general method
is suggested by the definition of density in cylindrical (Eq. (1)) and spherical (Eq. (2))
coordinates, weighting both the charge and the volume. That is,

nj =
∫

r f (r )Wj (r) dr∫
r Wj (r) dV

, (15)

whereWj (r) is an interpolation function which weights particles at positionr to meshj , and
dV is a volume element, given in one dimension bydV= 2πrdr in cylindrical coordinates
anddV= 4πr 2dr in spherical coordinates.

For linear weighting in cylindrical coordinates, the density can then be written

nj =
∫ r j

r j−1
f (r ) r−r j−1

r j−r j−1
dr + ∫ r j+1

r j
f (r ) r j+1−r

r j+1−r j
dr∫ r j

r j−1
2πr r−r j−1

r j−r j−1
dr + ∫ r j+1

r j
2πr r j+1−r

r j+1−r j
dr

. (16)

The edge densities are found simply by dropping the out-of-bounds integrals,

n0=
∫ r1

r0
f (r ) r1−r

r1−r0
dr∫ r1

r0
2πr r1−r

r1−r0
dr

(17)

and

nN =
∫ r N

r N−1
f (r ) r−r N−1

r N−r N−1
dr∫ r N

r N−1
2πr r−r N−1

r N−r N−1
dr
. (18)

For f (r ) = 2πr , we obtain the exact solution for all 0≤ j ≤ N, nj = 1. For more general
particle distributions (specifically whenf is not a linear function ofr ), Eqs. (16)–(18) result
in an error term which depends on the weighting scheme; for example, the linear weighting
function results in an error proportional to12

r .
This can be implemented in a standard linear weighting scheme simply by modifying the

volumes used to computenj . Taking the cell size in thez-direction to be1z, the volumes
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become

Vj = 1z
π

3
[r j+1(r j + r j+1)− r j−1(r j−1+ r j )], (19)

V0 = 1z
π

3
(r1− r0)(2r0+ r1), (20)

and

VN = 1z
π

3
(r N − r N−1)(r N−1+ 2r N). (21)

The corrected and uncorrected densities have been implemented in the XOOPIC [4] and
XPDC1 [5] codes, and comparisons of the results are shown in Fig. 1. The comparisons
shown are valid when there is at least one particle per cell. Total charge and volume are
also identically conserved with the corrected method. This method can be easily extended
to arbitrary weighting functions by using the desired weighting in Eqs. (16)–(18).

For linear weighting in spherical coordinates the density can be written

nj =
∫ r j

r j−1
f (r ) r−r j−1

r j−r j−1
dr + ∫ r j+1

r j
f (r ) r j+1−r

r j+1−r j
dr∫ r j

r j−1
4πr 2 r−r j−1

r j−r j−1
dr + ∫ r j+1

r j
4πr 2 r j+1−r

r j+1−r j
dr
, (22)

with edge densities again obtained by dropping out-of-bounds integrals.
For the uniform particle distribution,f (r )= 4πr 2, we again obtain the exact solution for

all 0≤ j ≤ N, nj = 1. For more general particle distributions we obtain the same result as
that of the cylindrical case above.

Similar to the cylindrical case, the method can be implemented for the spherical scheme
by precomputing the volumes using the denominator of Eq. (22). That is,

Vj = π

3
(r j+1− r j−1)

(
r 2

j−1+ r j−1r j + r j−1r j+1+ r 2
j + r j r j+1+ r 2

j+1

)
, (23)

V0 = π

3
(r1− r0)

(
3r 2

0 + 2r1r0+ r 2
1

)
, (24)

and

VN = π

3
(r N − r N−1)

(
r 2

N−1+ 2r N−1r N + 3r 2
N

)
. (25)

The densities computed with the method presented here are compared to the uncorrected
densities for linear weighting on a uniform and nonuniform mesh in Fig. 2.

4. CURRENT DENSITY

This algorithm can be applied to current density for the electromagnetic source term in
a straightforward manner by usingJ= nqv. The quantityqv is weighted to the mesh for
each particle, and the result is divided by the surface area,S. To obtain the surface area,
consider the differential elements of the components in cylindrical coordinates,

dSr = r dθ dz, (26)

dSθ = dr dz, (27)
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and

dSz = r dr dθ. (28)

It is evident from Eqs. (26)–(28) that only the axial component ofS will result in a
nonlinear dependence onr when computing the surface area fromS= ∫ WdS, whereW is
the particle–mesh weighting used. The results for the axial component of the current density
are trivially different from the charge density results derived above, and the comparison plots
are identical.

5. CONCLUSIONS

An algorithm for obtaining the correct charge and current densities in curvilinear coordi-
nate systems for arbitrary particle interpolation schemes is described. Volumes and surface
areas are weighted to the mesh using the same interpolation scheme used to weight particles.
The method recovers the charge density correction factors for linear weighting in cylindrical
coordinates [2] but extends to the more general case. The method has the notable beneficial
properties of conserving charge and current as well as total volume and surface area on a
general orthogonal mesh. The algorithm yields the exact answer for the uniform particle
distribution, as demonstrated here. Arbitrary distributions are similarly correct to the mesh
resolution, becoming exact as the mesh size approaches zero for continuum distributions;
the corresponding electric field can also be shown to approach the exact solution in the same
limit. This is a significant conceptual departure from the previous scheme of computing
using incorrect volumes and then using correction factors designed for special cases [2].
The results are easily extended to two and three dimensions.
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